Additions et soustraction de FRACTIONS

1- Les dénominateurs sont les mêmes.

Propriété : Pour additionner (ou pour soustraire) deux nombres en écriture fractionnaire de même dénominateur :

- On additionne (ou on soustrait) les numérateurs ;
- On conserve le dénominateur commun.

$$\frac{10}{3} + \frac{7}{3} = \frac{10+7}{3} = \frac{17}{3}$$

$$\frac{4}{5} - \frac{2}{5} = \frac{4-2}{5} = \frac{2}{5}$$

2- Un dénominateur est multiple de l'autre

Propriété : Pour additionner (ou pour soustraire) deux nombres en écriture fractionnaire lorsque le dénominateur de l'un est multiple du dénominateur de l'autre :

- On transforme un quotient pour obtenir le même dénominateur (celui qui a le plus petit dénominateur)
- On additionne (ou on soustrait) les numérateurs ;
- On conserve le dénominateur commun.

$$\frac{3}{8} + \frac{7}{2} = \frac{3}{8} + \frac{7 \times 4}{2 \times 4} = \frac{3}{8} + \frac{28}{8} = \frac{3+28}{8} = \frac{31}{8}$$

$$\frac{2}{3} - \frac{1}{9} = \frac{2 \times 3}{3 \times 3} - \frac{1}{9} = \frac{6}{9} - \frac{1}{9} = \frac{6-1}{9} = \frac{5}{9}$$

$$\frac{2}{3} - \frac{1}{9} = \frac{2 \times 3}{3 \times 3} - \frac{1}{9} = \frac{6}{9} - \frac{1}{9} = \frac{6 - 1}{9} = \frac{5}{9}$$

SAVOIR-FAIRE 1: ADDITIONNER ET SOUSTRAIRE DES FRACTIONS DE MEME DENOMINATEUR

EXERCICE 1 : Donner le résultat en écriture fractionnaire :

$\mathbf{a.} \frac{5}{10} + \frac{6}{10} = \frac{\dots}{\dots}$	$\mathbf{b.} \frac{1}{100} + \frac{2}{100} = \frac{\dots}{\dots}$	$\mathbf{c.} \frac{7}{8} + \frac{7.4}{8} = \frac{\dots}{\dots}$	$\mathbf{d.} \frac{1}{6} + \frac{5}{6} = \frac{\dots}{\dots}$	$\mathbf{e.} \ \frac{4}{100} + \frac{40}{100} = \frac{\dots}{\dots}$
$\mathbf{f.} \frac{6,2}{10} + \frac{2,8}{10} = \frac{\dots}{\dots}$	$\mathbf{g.} \frac{4,1}{3} + \frac{4,02}{3} = \frac{\dots}{\dots}$	$\mathbf{h.} \frac{27}{13} + \frac{15}{13} = \frac{\dots}{\dots}$	i. $\frac{94}{29} + \frac{6}{29} = \frac{\dots}{\dots}$	$\mathbf{j.} \ \frac{754}{231} + \frac{157}{231} = \frac{\dots}{\dots}$

SAVOIR-FAIRE 2: ADDITIONNER ET SOUSTRAIRE DES FRACTIONS DE DENOMINATEUR MULTIPLE

EXERCICE 2 · Donner le résultat en écriture fractionnaire ·

EXERCICE 2: Donner le resultat en ecriture fractionnaire :						
$\mathbf{A} = \frac{5}{2} \times \frac{10}{\times 10} + \frac{17}{20}$		$C = \frac{3}{2} \times \dots + \frac{7}{4}$	$D = \frac{5}{6} + \frac{2}{3} \times \dots$			
$A = \frac{50 + 17}{20}$	$B = \frac{\dots + 3}{10}$	$C = \frac{\dots + 7}{4}$	$D = \frac{5 + \dots}{6}$			
$A = \frac{67}{20}$	$B = \frac{\dots}{10}$	$C = \frac{\cdots}{4}$	$D = \frac{6}{\cdots}$			
$E = 6 \frac{\times \dots}{\times \dots} + \frac{4}{3}$	$F = \frac{12}{5} + 7 \times \dots$	$G = \frac{5}{6} - \frac{1}{2} \frac{\times \dots}{\times \dots}$	$H = \frac{7}{3} \times \dots + \frac{13}{12}$			
$E = \frac{\dots + 4}{3}$	$F = \frac{12 + \dots}{5}$	$G = \frac{5 - \dots}{6}$	$H = \frac{\dots \dots + 13}{12}$			
$E = \frac{\dots}{3}$	$F = \frac{\dots}{5}$	$G = \frac{\dots}{6}$	$H = \frac{\dots}{12}$			

$A = \frac{1}{2} + \frac{1}{4}$	$B = \frac{1}{2} + \frac{5}{6}$	$C = \frac{1}{2} + \frac{3}{10}$	$D = \frac{2}{3} + \frac{1}{6}$	$E = \frac{5}{4} + \frac{7}{2}$
$F = \frac{7}{3} - \frac{13}{15}$	$G = \frac{7}{2} - \frac{5}{4}$	$H = \frac{5}{9} - \frac{1}{3}$	$I = \frac{13}{2} - \frac{1}{4}$	$J = \frac{10}{18} - \frac{1}{6}$

Probabilité

- Une expérience est dite aléatoire lorsque son résultat est déterminé par le hasard et ne peut donc pas être prévu à l'avance avec certitude.
- Chaque résultat possible d'une expérience aléatoire est appelé une issue.

Prei	mière	expérience :	On lance	une nièce o	de monnaie et	on regarde la	a face de	dessus
110		caperience.	On lance	une piece c	ac momate ci	on regarde i	a race uc	ucssus

Cette expérience a deux issues :

Deuxième expérience : On lance un dé non truqué numéroté de 1 à 6 (chaque face a la même chance d'être obtenue) et on lit le numéro de la face supérieure

- 1. Combien y a t-il d'issues (de « résultats ») possibles ?.....
- 2. Quelles sont ces issues?.....
- 3. « Jeter un dé » est donc une expérience aléatoire (on ne peut pas connaître le résultats à l'avance), celle-ci peut donner lieu à plusieurs éventualités comme « obtenir 5 » ou « obtenir un nombre supérieur ou égal à 4 »

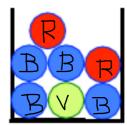
 - b. Quelles sont les issues possibles de l'événement « obtenir un nombre qui vaut au moins 2 »?

.....

c. Quelles sont les issues possibles de l'événement « obtenir 3 » ?

Propriété: Dans une situation d'équiprobabilité (lorsque toutes les issues ont la même probabilité), on admettra que la probabilité d'un événement est égale au quotient suivant :

 $p = \frac{\text{nombre d'issues favorables}}{nombre d'issues possibles}$


La probabilité d'un événement est un nombre toujours compris entre 0 et 1

Exemple : On choisit au hasard l'une des 7 boules et on repère sa couleur.

Par comparaison on a 4 possibilités sur 7 d'obtenir une boule bleue, on pose

donc P(Bleue) =
$$\frac{4}{7}$$
 De même P(Rouge) = et P(Verte) =

Calculer la probabilité d'obtenir une boule noire : P(Noire) =

Exercice 1 : Un sac contient 7 boules : 4 boules vertes et 3 boules jaunes. Les boules vertes sont numérotées 2 ; 3; 3; 4 et les boules jaunes 4, 2 et 3. On tire une boule au hasard et on note sa couleur.

- 1. Quelle est la probabilité de tirer une boule jaune ?
- 2. Quelle est la probabilité de tirer une boule portant le numéro 3 ?
- 3. Quelle est la probabilité de tirer une boule verte portant le numéro 3 ?

Exercice 2 : On tire au hasard une carte dans un jeu de 52 cartes.

- 1. Quelle est la probabilité de l'événement A : "Tirer la reine de coeur" ?
- 2. Quelle est la probabilité de l'événement B : "Tirer un trèfle" ?
- 3. Quelle est la probabilité de l'événement C : "Tirer un as" ?
- 4. Quelle est la probabilité de l'événement D : "Tirer un as de couleur rouge" ?
- 5. Quelle est la probabilité de l'événement E : "Tirer une carte de couleur noire" ?